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Abstract. Tensor fields, as spatial derivatives of scalar or vector potentials, offer powerful insight into subsurface structures

in geophysics. However, accurately interpolating these measurements—such as those from full-tensor potential field gradiom-

etry—remains difficult, especially when data are sparse or irregularly sampled. We present a physics-informed spatial neural

network that treats tensors according to their nature as derivatives of an underlying scalar field, enabling consistent, high-

fidelity interpolation across the entire domain. By leveraging the differentiable nature of neural networks, our method not5

only honours the physical constraints inherent to potential fields but also reconstructs the scalar and vector fields that generate

the observed tensors. We demonstrate the approach on synthetic gravity gradiometry data and real full-tensor magnetic data

from Geyer, Germany. Results show significant improvements in interpolation accuracy, structural continuity, and uncertainty

quantification compared to conventional methods.
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1 Introduction10

Full-tensor gravity and magnetic gradiometry measurements capture the spatial derivatives of potential fields, offering rich

detail about subsurface density and magnetization variations. These tensor fields enhance geological imaging by encoding

directional and gradient information that scalar fields do not straightforwardly provide (Brewster, 2011; Ugalde et al., 2024).

However, gradiometry data are typically sparse and anisotropically sampled—often along sub-parallel flight lines—posing

significant challenges for downstream analysis, which relies on gridded representations.15

Interpolating these tensor fields accurately is far from trivial. Conventional methods often treat tensor components as indepen-

dent scalar fields, leading to noise amplification, loss of directional trends, and violations of physical constraints like symmetry

and harmonicity. More advanced approaches, such as eigen-decomposition-based interpolation (Satheesh et al., 2023), attempt

to preserve tensor structure, but remain limited in generalisability and scalability.

Recent advances in neural fields—also known as coordinate-based or implicit neural representations—offer a promising alter-20

native. These models learn continuous functions that map spatial coordinates to field values, and crucially, they are differen-

tiable. This allows them to incorporate gradient information directly into training—a key advantage for geophysical applica-

tions where tensor data often represents derivatives of an underlying field (Raissi et al., 2019). However, standard multilayer

perceptron (MLP) architectures suffer from spectral bias, meaning they struggle to capture high-frequency features common

in geophysical signals (Rahaman et al., 2019). To address this, techniques like random Fourier feature (RFF) mapping and25

periodic activation functions (e.g., SIREN, Wavelet) have been introduced, enabling neural fields to model fine-scale spatial

variations more effectively (Sitzmann et al., 2020; Saragadam et al., 2023).

In this paper, we introduce a physics-informed neural field approach tailored for interpolating geophysical tensor data. Our

model learns a single scalar potential field from sparse tensor measurements, leveraging RFF mappings and embedded physical

constraints (e.g., symmetry, Laplacian properties) to reconstruct consistent, physically meaningful tensor fields. We further30

introduce an ensemble strategy to quantify uncertainty in the interpolations, offering insights into data sensitivity and model

confidence. We demonstrate this framework on both synthetic gravity data and real airborne magnetic gradiometry from Geyer,

Germany, highlighting clear improvements over traditional methods in accuracy and structural continuity, as well as opening

the door to uncertainty quantification.

2 Background35

A tensor is an algebraic object that encodes multilinear relationships between sets of vectors and linear functionals (Lee, 2012).

A tensor field assigns a tensor to every point in space, allowing the local structure of a vector field or scalar potential to be

described throughout a region. In geophysical applications, tensors naturally arise as derivatives of vector and scalar fields,

extending classical multivariable calculus into field-based formulations.
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2.1 Potential fields40

Many measured geophysical quantities, such as gravitational acceleration g and the magnetic field b, are conservative vector

fields—i.e., they are gradients of scalar potential fields (Blakely, 1995). Within R3, a conservative vector field v is irrotational

at all points (given by the position vector r), satisfying

v =∇ϕ ↔ ∇×v = 0

Where ∇=
[

∂
∂rx

, ∂
∂ry

, ∂
∂rz

]
is the gradient operator. For instance, the magnetic field can be expressed as the gradient of a45

scalar magnetic potential in regions free of electric currents—a condition typically met outside source distributions. Taking the

gradient of v yields the Hessian tensor H, a second-order tensor that captures the local curvature of the scalar potential

H =∇v =∇(∇ϕ) =
∂2ϕ

∂ri∂rj
≡ ∂i∂jϕ ∀ i, j = 1,2,3

In source-free regions, these fields are not only irrotational but also solenoidal—i.e., divergence-free. The divergence of v

corresponds to the trace of the Hessian, which reflects the Laplace equation50

∇2ϕ≡ tr(H) = 0

This implies that, outside source regions, scalar potentials are harmonic functions, and their Hessians are traceless. Addition-

ally, since mixed partial derivatives commute (by Schwarz’s theorem), the Hessians are symmetric and thus comprise five

independent components.

2.2 Full Tensor Gradiometry55

Direct measurements of second-order Hessian tensors—particularly gravity and magnetic gradient tensors—represent the cur-

rent frontier in potential field surveying (Rudd et al., 2022; Stolz et al., 2021). Access to the full tensor enables characterization

of scalar field curvature, aiding in tasks such as edge detection, structure delineation (Zuo and Hu, 2015), and magnetic rema-

nence characterization (Ugalde et al., 2024). These measurements are typically acquired via airborne surveys, which are highly

anisotropic in their sampling: dense along flight lines and sparse across them. Vector fields are frequently reconstructed from60

tensor components using Fourier-domain transfer functions, which integrate the measured gradients into vector components

while suppressing noise (Vassiliou, 1986). Since most downstream analyses, including Fourier-based reconstructions, require

gridded tensor and vector fields, interpolation is a critical preprocessing step.

Rudd et al. (2022) note that, in practice, tensor components are often treated as separate scalar fields and interpolated using

standard methods like minimum curvature or radial basis functions (RBFs). Several alternative approaches have been proposed65

to enforce physical or geometric constraints during interpolation. For example, Brewster (2011) uses iterative Fourier-domain

transformations, while Fitzgerald et al. (2012) suggest interpolating eigenvalues and eigenvectors separately.

In essence, the quaternion interpolation algorithm decomposes the process into two parts: interpolating the eigenvalues and

the corresponding eigenvectors. Two of the three eigenvalues are interpolated using standard schemes (e.g., RBF or minimum
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curvature), with the third computed such that their sum is zero—a direct consequence of the Hessian’s traceless-ness. The70

eigenvector matrix of any symmetric real matrix is guaranteed to be real and orthogonal, allowing it to be represented as a

3D orientation and encoded as a quaternion (Hamilton, 1844), provided some constraints on ordering and sign convention

are imposed (Satheesh et al., 2023). These quaternions are then interpolated using Spherical Linear Interpolation or SLERP

(Shoemake, 1985), which ensures smooth variation of orientation across space. While SLERP works for two quaternions,

Markley et al. (2007) devised a scheme that works across a set of weighted quaternions.75

However, these methods still have limitations: component-wise methods can be insensitive to the true shape of the tensor,

whereas full-tensor schemes involve complex handling of 3D rotations, which are complicated due to the existence of indeter-

minate points and the need for shifting reference frames due to non-uniqueness of 3D rotations. In this contribution, we propose

a neural field method that interpolates the scalar potential field directly—constrained by physical laws and Hessian measure-

ments—to produce consistent, noise-minimizing tensor and vector fields that respect observations and preserve geologically80

meaningful structures.

2.3 Neural fields

Neural fields—also known as implicit neural representations, or spatial neural networks—are models that represent continuous

spatial functions using neural networks. Unlike traditional methods that store information in discrete grids or meshes, neural

fields encode spatial structure within the weights and biases of a neural network, enabling resolution-independent, continuous85

representations of complex signals.

The application of spatial neural networks in geoscience dates back to Openshaw (1993), who used them for interpolating

sparse spatial data and found their performance competitive with fuzzy logic and genetic algorithms, a conclusion also reached

by Hewitson et al. (1994). More recently, neural fields have gained traction in computer vision—for example, in volumetric

radiance field modelling (Mildenhall et al., 2020)—and in geoscience applications such as 3D geological modelling (Hillier90

et al., 2023) and potential field representation (Smith et al., 2025).

A key advantage of neural fields is their differentiability: they allow access not only to predicted signals but also to their spatial

derivatives via automatic differentiation. This is especially useful when the scalar field itself is unobservable or physically ar-

bitrary, but its gradients are measurable—as is often the case in geological modelling using structural orientation data (Kamath

et al., 2025; Thiele et al., 2025), or in reconstructing potential fields from tensor gradiometry data.95

3 Methodology

This section outlines the key components of our proposed framework, including the use of random Fourier features, a harmonic

feature embedding, model architecture, and loss function. We also describe the methodology used to generate the synthetic

dataset used in our study.
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3.1 Random Fourier Feature mapping100

A common challenge in implicit neural representations is the mismatch between low-dimensional input coordinates and the

complex, high-frequency structure of the target signal. To address this, we employ Random Fourier Feature (RFF) mapping—a

kernel approximation technique introduced by Rahimi and Recht (2007) and adapted to deep learning by Tancik et al. (2020).

RFF mapping projects spatial coordinates into a higher-dimensional space, making it easier for the network to learn fine-scale

spatial variation.105

Given the position vector r ∈ RN , we define a frequency (also called weights) matrix W, of the dimension M×N , with every

component sampled from a standard Gaussian distribution

Wij ∼N (0,1) (1)

Where M is the number of Fourier features. Furthermore, to encode known signal frequency characteristics (e.g., the maximum

possible frequency based on sampling resolution), we rescale the weights matrix using different length scales. For every length110

scale ℓs ∀ s = 1 . . .L, we map the position vector onto a 2M dimensional feature space, giving us a feature vector ν with the

components given by

νi = sin
(
2πWsr + δi

π

2

)
∀ i = 1 . . .2M, where Ws =

W
ℓs

, δi =





0, i is even

1, i is odd

The transformation enables the model to capture high-frequency details more effectively, while the random sampling of fre-

quencies introduces a useful stochastic component. When followed by a linear MLP with no non-linear activations, the resulting115

mapping approximates a full Fourier reconstruction of the signal (Bracewell and Kahn, 1966). Non-linear activations help the

model fit sparse data more flexibly (LeCun et al., 2015), albeit at the cost of simplicity, interpretability, and gradient stability.

3.2 Harmonic feature embedding

Applying Fourier features uniformly in all dimensions can lead to poor convergence when modelling harmonic functions.

Liouville’s Theorem (Axler et al., 2001) states that any bounded, periodic, harmonic function in RN must be constant. This120

can cause the network to collapse onto trivial solutions. To avoid this, we partition the position vector into horizontal and

vertical components

r = rxy + rz k̂ where rxy ∈ R2

We apply the RFF mapping in the horizontal (xy) plane and encode a decaying term in the vertical (z) direction, to replicate the

observed decay of scalar potentials and to encourage harmonicity. The modified feature vector ν therefore has its components125

given by

νi = sin
(
2πWsrxy + δi

π

2

)
⊙ e−∥Ws∥2rz ∀ i = 1 . . .2M, where Ws =

W
ℓs

, δi =





0, i is even

1, i is odd
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Where W is now an M × 2 dimensional weights matrix, ∥Ws∥2 denotes the row-wise Euclidean norm of the weights ma-

trix, and ⊙ denotes element-wise multiplication. This formulation helps the network respect the expected vertical decay of

scalar potentials, aligning the embedding with Laplace’s equation. While the network output remains a non-linear combina-130

tion of the features, this decay-aware encoding enhances generalization in under-sampled regions and theoretically supports

upward/downward continuation—though that is outside the scope of this study.

3.3 Synthetic dataset

To evaluate our method, we generated a synthetic gravity gradiometry dataset (Fig. 1) using SimPEG (Cockett et al., 2015).

The model consists of three density-contrast anomalies within a zero-density half-space:135

1. Torus: +1 gcm−3, semi-major axis 450m, semi-minor axis 220m, cross-section radius 40m, lying in the xy plane and

rotated 12◦ CCW from the y-axis.

2. Dyke: +0.15 gcm−3, 60m aperture, striking at 45◦ to the y-axis.

3. Cube: –0.2 gcm−3, 400m side length, rotated 45◦ about the vertical (z) axis.

The simulation mesh has a voxel size of 20m. This geometry offers a challenging mix of sharp discontinuities and smooth140

curvature for testing interpolation. We generated a high-resolution ground truth dataset sampled at 25m spacing both along

and across the lines, as well as a low-resolution airborne-style dataset with flight lines 200m apart in the y direction (perpen-

dicular to the flight line), and sampled densely (15m) along the x direction (Fig. 1B-F). Gaussian noise was added to simulate

measurement uncertainty.

To test robustness to data sparsity, we also computed 10 versions of the low-resolution dataset with line spacings varying145

from 80m to 560m. These were used to benchmark interpolation quality and information loss under varying acquisition

densities. Comparisons were made with a truncated RBF interpolator (250 nearest neighbours, smoothing factor 100), as well

as results from the quaternion interpolation (QUAT, Fitzgerald et al. (2012)), combining RBF-interpolated eigenvalues with

SLERP-interpolated quaternions. All results were evaluated on the same high-resolution grid using the R2 (coefficient of

determination), MSE (Mean Squared Error), and SSIM (Structural Similarity Index Measure).150

3.4 Model architecture and loss function

Our model has two main components: a RFF mapping block followed by a sequence of fully-connected feed-forward layers

that together produce a continuous scalar field representation (Fig. 2. We found that the best performing model for our usage

used 64 RFFs and three hidden layers with 1024, 512, and 512 neurons each. The loss function used to train our model involves

two types of losses - a data loss and a Laplacian loss. The data loss is computed at the points of measurement between the155

measured tensor components and the hessians acquired from the predicted scalar field through automatic differentiation (AD)

(Margossian, 2019). Since the model is built with pytorch (Paszke et al., 2019), we use the inbuilt torch.autograd engine
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to compute hessians from the scalar field output. For the predicted scalar field , the data loss term is given by

Ld = |∂i∂jϕ−Hij | ∀ i, j = 1,2,3

Where ∂i(·) refers to the partial derivative with the respect to the ith input computed with AD, and H is the measured hessian160

tensor. Note that this reconstruction loss is computed using all the measurement points.

The second term in the loss function is derived to encourage the predicted scalar field to conform with a partial differential

equation defined across the whole domain of interest. Since the predicted field has to be harmonic not only at the points of

measurement, but everywhere, we thus penalise non-zero traces of the predicted Hessian tensors, hereafter referred to as the

Laplacian loss. During every training epoch, hessians are computed for randomly sampled points within the domain of interest165

(with the number of points usually set to be equal to the number of measurement points). The Laplacian loss for these predicted

tensors is then computed as

Ll = |tr(∇(∇ϕ))|= |∂i∂iϕ|

Here, the Einstein summation convention is used. This loss penalises high values of the trace of the predicted hessian tensor

outside the measured points, thereby encouraging harmonicity on the underlying scalar field within the domain of interest.170

When combined, the total loss that is optimised is thus

L= αdLd + αlLl

The hyper-parameters αd and αl are (optionally) initialised as fractions of the respective initial losses, in order to help find an

appropriately balanced weighting of the different loss terms.

3.5 Uncertainty estimation175

A key benefit of using RFF embeddings is that their stochastic nature allows for ensemble-based uncertainty estimation. As

a result of the stochasticity, each initialisation of the RFF mapping induces a unique basis in the feature space, causing the

neural network to converge on a solution that represents a random sample from a broader distribution of plausible scalar fields

conditioned on the training data.

To exploit this property for uncertainty quantification, we generate an ensemble of model outputs by varying the random seed180

used to sample the RFF projection matrix. Ensemble-based uncertainty quantification has a long and successful history in

geophysics, particularly in subsurface modelling and inversion. In seismic full waveform inversion (FWI), ensembles have

been used to assess the variability and reliability of recovered velocity models under data noise and model ambiguities (Ficht-

ner et al., 2011). In reservoir geophysics, the Ensemble Kalman Filter (EnKF) has become a widely used tool to propagate

uncertainty in dynamic reservoir simulation and history matching (Evensen, 2009). More recently, ensemble-based methods185

have also been applied to probabilistic gravity and magnetotelluric inversion (Laloy et al., 2013), demonstrating their utility in

quantifying non-uniqueness and guiding data acquisition strategies.
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In our implementation, each ensemble member corresponds to a different realization of the frequency space, leading to stochas-

tically independent function approximations that depend, largely, on the degree to which the solution is constrained by the

available data. This ensemble-based approach provides a Monte Carlo-style estimate of the model’s epistemic uncertainty. Fur-190

thermore, because the scalar field is modelled continuously, we can propagate this ensemble approach to the field’s derivatives,

helping us quantify uncertainty in derived physical quantities. Therefore, we showcase our results as the Ensemble Neural

Field (ENF) method, which corresponds to the average prediction from an ensemble of 100 models.

4 Results

4.1 Synthetic Data195

We first evaluate the Ensemble Neural Field (ENF) method on the synthetic gravity gradiometry dataset, comparing it against

a Truncated Radial Basis Function (RBF) interpolator (Fig. 3). Panels A and B show the residuals between predicted and true

Hxy values for the RBF and ENF methods, respectively. The RBF output exhibits high-amplitude residuals (MSE = 4.698

eotvos) between flight lines, indicating overfitting to sampled regions and poor generalisation across them. It also fails to

preserve continuity in linear trends that lie at high angles to the flight direction. In contrast, the ENF method yields spatially200

smoother residuals with significantly lower error (MSE = 0.825 eotvos), suggesting homogeneous improved performance

across the domain. Insets in both panels show 1:1 scatter plots, where the ENF predictions cluster more tightly along the

identity line—further confirming its accuracy.

Panel C summarises R2 scores for each tensor component across four interpolation methods: RBF, and two neural field-based

(NF and ENF). The NF method reflects the mean R2 from 100 independently trained models, with error bars showing standard205

deviation. The ENF method, by contrast, uses the averaged prediction across those same models. Both neural field approaches

outperform classical methods, with ENF showing a slight edge—demonstrating that ensemble averaging reduces variance and

enhances prediction stability.

To further evaluate structural accuracy, we compute the Structural Similarity Index Measure (SSIM) between predicted and true

tensor fields (Fig. 4). The ENF method achieves higher SSIM scores across all three components—0.89 (Hxx), 0.90 (Hxy),210

and 0.87 (Hxz)—compared to 0.79, 0.63, and 0.79 for RBF. The greatest improvement is seen in Hxy , where RBF results

show structural distortion, over-smoothing, and “boudinage” artefacts along flight lines (Naprstek and Smith, 2019). ENF, on

the other hand, preserves coherent anomalies and directional continuity even across sparsely sampled regions.

4.2 Rate of information loss

To assess robustness under sparse sampling, we compare the interpolation results for varying line spacings from 80m to 560m215

(Fig. 5). Classical methods (RBF and quaternion-based interpolation, or QUAT) show sharp drops in accuracy beyond 200m

spacing. For example, the RBF method’s average R2 plummets to 0.43 and SSIM to 0.21 at 560m. In contrast, NF interpolation
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maintains relatively stable performance up to ≈ 400m spacing, with a much gentler decline at wider gaps. At 560m, the NF

model still achieves an R2 of 0.87 and an SSIM of 0.58.

The MSE trends mirror this behaviour: classical methods exhibit steep error increases with sparser lines, while the NF model220

degrades more gracefully. QUAT offers minor improvements over component-wise interpolation but follows a similar perfor-

mance trajectory. This suggests that the main bottleneck in full tensor interpolation lies in the eigenvalue interpolation step,

which—like the component-wise case—relies on RBF methods.

4.3 Magnetic gradiometry from Geyer

Finally, we validated the method on real airborne magnetic gradiometry data from Geyer, located in Germany’s Erzgebirge225

region—part of the Central European Variscides. The area features high- and medium-pressure metamorphic units, orthogneiss

domes, and post-orogenic granites (Kroner and Romer, 2013), with abundant ore-forming skarns containing magnetic minerals

(Burisch et al., 2019; Lefebvre et al., 2019) as well as magnetite-rich quartzites and amphibolites that occur as intercalations

within the metamorphic rocks. These rocks contribute to complex magnetic anomalies ideal for real-world evaluation.

We test the ENF method on a real airborne magnetic gradiometry dataset from Geyer (Fig. 6), acquired by Supracon AG in230

2016 as part of the E3 (ErzExploration Erzgebirge) project. As in the synthetic case, we compare ENF to RBF interpolation.

Every fourth flight line is used for training, with the others reserved for validation. Since ground-truth grids are unavailable,

we assess accuracy using residual analysis and R2 scores computed along the withheld lines.

We plot the residual maps for Hxy on test lines (Fig. 7). While absolute R2 scores are lower than in the synthetic case—owing to

added geological complexity and noise—ENF still achieves 10–20% better performance than RBF across most tensor compo-235

nents. Residuals show that ENF reduces systematic bias between lines and preserves anomaly shapes more faithfully. RBF, by

contrast, displays patchy behaviour with abrupt shifts between lines—a well-known artifact of interpolating sparse or anisotrop-

ically sampled data (Hillier et al., 2014; Wittwer, 2009).

To get a qualitative overview of the overall result, we plot the histogram-equalized, gridded visualisations of the Hxx, Hxy ,

and Hxz tensor components (Fig. 7). Panels A-C show the result from using all of the flight lines with an RBF interpolator,240

serving as our ground-truth. The RBF results from using every fourth line (Panels D–F) reveal strong aliasing and inconsistent

behaviour between flight lines—hallmarks of inadequate cross-line interpolation. In contrast, the ENF interpolations (Panels

G–I) exhibit smoother transitions and clearer structural trends, especially in directions orthogonal to flight lines. The ENF

model successfully mitigates high-frequency striping and captures geologically meaningful features.

9

https://doi.org/10.5194/egusphere-2025-2345
Preprint. Discussion started: 25 June 2025
c© Author(s) 2025. CC BY 4.0 License.



5 Discussion245

5.1 Accurately reconstructing tensor fields

The proposed Neural Field (NF) Interpolator has shown remarkable success in interpolating tensor gradiometry data. Our

results show that the additional information contained within the hessian tensor can help derive a more accurate reconstruction

of the entire field as sampling gets sparser (Fig. 5), provided the interpolation algorithm can access the full tensor constraints.

For equivalent inputs, the NF interpolation recovers a signal that better fits all the tensor components, while maintaining the250

integrability and physical properties inherent to a hessian tensor field.

We also see equivalent results from all methods when line spacings are tight (i.e., for line spacings of 80m, 100m and 120m

in our synthetic tests). This suggests an oversampling with respect to the spatial frequencies in the signal, such that all the

interpolation methods converge to the same (correct) result to yield high accuracy metrics. Results then diverge as line spacing

increases to 200m, indicating the neural field interpolation is able to leverage information in the shape of the tensors to continue255

to derive accurate reconstructions, while the RBF and quaternion methods cannot.

The reason that the results converge with close spatial sampling could be attributed to the equivalence of SLERP and standard

linear interpolation as the angle between the quaternions describing the orientations of the input data points goes to zero.

Since a tighter line spacing ensures a smoother graduation of the eigenvector orientations (i.e., a smaller change in the angle

between the corresponding quaternions), the resulting interpolation is closer to what one would achieve with standard linear260

interpolation of the components. But, under sparse sampling conditions, the differences seen in the results indicate that an

interpolation using neural field formulation better preserves the shape of interpolated tensors, without the need for cumbersome

quaternion formalisms.

The interpolated tensor components for Geyer (Fig. 8) also showcase significant improvements over the component-wise

interpolation of these tensors. The extension and continuation of the trend from the centre of the grid, towards the north-east is265

preserved in the ENF result, but is completely absent in the RBF result. Any interpretation of these grids would thus result in

significantly different geological structures, highlighting the necessity for appropriate interpolation methods.

5.2 Recovery of vector fields

Many analysis methods applied to tensor gradiometry data require a domain-wide integral to estimate the underlying vector

field. The simplest way of computing this integral is by ignoring everything but the last row of the gradiometry tensor, and270

using the Hxz , Hyz , and Hzz components to get vector components. Due to the Fourier domain properties, vector components

are defined as a vertical integral in the Fourier domain (Mickus and Hinojosa, 2001). Similarly, the power spectrum of these

signals can also be used to generate vector components, using transfer functions that fit all of the signals while minimising noise

(Vassiliou, 1986). However, in our method, we can completely avoid this potentially complex integral. We can use automatic

differentiation to acquire the vector field components from the predicted scalar potential as the neural field predicts scalar275
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potential and not the gradiometry tensor itself. Importantly, we thus estimate the vector field components exclusively from real

measurements, rather than from an integral over a regularly spaced (i.e. interpolated) grid that is already one-step removed

from the data.

To test the recovery of vector components from our model, we compared it to the benchmark generated using the RBF interpo-

lation on all flight lines and then applying Fourier domain transfer functions to compute the integral. We also use the transfer280

functions on the RBF interpolation results for our training data for a baseline comparison (Fig. 9). Comparing the resulting

bx (Fig. 9, Panels A, D, and G) components, we see that features present in both the ground truth and the ENF results are

completely erased from the RBF result. Similarly, the shape of the anomaly at the top-right corner of the grid is distorted in

the RBF result, but completely preserved within the ENF grid. Slight changes in trend directions (i.e., the shift of the strike of

the anomalies to having a smaller azimuth) also cannot be seen in the RBF results, which has prominent “boudinage” artefacts285

along the flight lines that cause a loss of trend and directional information perpendicular to the flight line. We suggest that these

results highlight the ability of the neural field interpolation to extract sensible information (resembling the ground truth) from

data acquired at four times the line spacing.

5.3 Uncertainty analysis and ensemble models

We also used the stochastic nature of our feature embeddings to do a preliminary uncertainty analysis for the results from our290

interpolator for the Geyer dataset (Fig. 10). The standard deviation plot shows higher variability in model predictions across

regions without data points (i.e., between the flight lines), which could be interpreted as an uncertainty measure. Interestingly,

the variance between flight lines seems to scale with the value of the underlying tensor component, leading to heteroscedasticity

in the predictions. This might need correction in future developments of our methodology. It is also worth noting that the NF

approach has parallels to the turning bands and spectral methods to simulate random fields (Mantoglou and Wilson, 1982),295

suggesting that a deeper stochastic link to other Gaussian process methods may be possible. This link could be exploited to

better understand the variance of neural field ensembles or consider future modifications of the present NF algorithms towards

tuned frequency matrix distributions (Equation 1).

The variance of our ensemble model is generally higher for the components with two derivatives in the same dimension (i.e.,

Hxx, Hyy, and Hzz), and for the derivatives involving the z component (i.e., Hxy seems to be the least uncertain). High same-300

dimension double derivative uncertainties might reflect the propagation of uncertainty through differentiation, as uncertainties

in two variables have a chance of cancelling out, but are only amplified with multiple passes through the same derivative

operator Li and Oldenburg (1998). The high uncertainty in the z components likely reflects the lack of information in the z

direction, as all of our training data are close to coplanar. Furthermore, we also see that the uncertainty in the recovered vector

components (Fig. 10, Panels G, H, I) never goes to zero (even where we have measurements of the tensor), reflecting the lack305

of information on the constant of integration.
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5.4 Challenges and future directions

We suggest that the proposed approach opens the door to using neural fields for potential field geophysics, and broader appli-

cations involving tensor quantities (e.g., stresses and strains). However, further work and research is needed in several areas.

Firstly, our model is highly sensitive to the length scales chosen for the Fourier encoding, and the hyper-parameters of the loss310

function. This requires a lot of empirical tuning. Automatising hyper-parameter tuning would boost the usability of our method

and help to ensure robust results. Furthermore, the inclusion of features with multiple length scales, while tested within our

synthetic dataset, needs confirmation for effectiveness in larger areas.

In addition, while the recovery of integrated vector fields is a big advantage of our approach, these have arbitrary integration

constants. This ambiguity means that, for every vector component, there is a constant that is unbounded in the other two315

dimensions. The same problem occurs when we use the Fourier domain transfer functions, as a fundamental lack on long

wavelength information leads us to misrepresenting the baseline for the recovered vector field (Ugalde et al., 2024). However,

in our methodology, this could be resolved with a few measurements of the vector components included as constraints on

the neural field. Therefore, one additional future direction would be to include multiple datasets (e.g., TMI measurements for

magnetic gradiometry, satellite or ground gravity measurements for gravity gradiometry) during the training process.320

Finally, the inclusion of a harmonic decaying term in the feature mapping makes our method a possible contender for an

innovative downward continuation scheme, and thus help with the problem of noise amplification in downward continuation of

potential field anomalies. This application needs further research, with proper tuning of the weight matrices and data acquired

at multiple elevations for validation.

6 Conclusion325

We introduce an innovative Neural Field (NF) interpolation method tailored to tensor gradiometry data in potential field

geophysics. This approach leverages the inherent physical relationships among tensor components by representing them as

derivatives of an underlying scalar potential field. Our method clearly demonstrates advantages over conventional interpolation

techniques, particularly in scenarios involving sparse and anisotropic data coverage, as are typical during aerial surveys.

Our method has shown substantial improvements in interpolation accuracy, structural fidelity, and robustness against data330

sparsity during evaluations on both synthetic gravity gradiometry data and a real-world magnetic gradiometry dataset from

Geyer, Germany. Quantitative comparisons using metrics such as R2 scores and Structural Similarity Index Measure (SSIM)

highlights the NF interpolator’s performance across all tensor components, a preservation of geological trends that are typically

used during interpretation, and a reduction of common artifacts caused by line-to-line inconsistencies.

Furthermore, by incorporating stochastic random Fourier features, our model likely opens the possibility to quantify uncer-335

tainty. Our analysis reveals heteroscedastic behaviour in the interpolations, and also highlights regions that require further
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data acquisition or refinement. Additionally, our approach seamlessly integrates vector and scalar field reconstructions through

automatic differentiation, simplifying subsequent geophysical analyses and interpretations.

Overall, we argue that the proposed NF interpolation method represents a significant advancement in processing tensor gra-

diometry data. Future developments should focus on larger scale applications, better understanding uncertainty of the model340

predictions, extended vertical interpolation capabilities (e.g., up- and downward continuations), and the integration of this

approach into broader geophysical inversion frameworks.
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Figures450

Figure 1. Synthetic subsurface model and corresponding gravity gradiometry data. (A) Horizontal cross-section of the synthetic geological

model at a depth of 140m, with high-resolution observation points shown as black dots. (B–F) The five independent components of the

gravity gradiometry tensor generated via forward modelling using SimPEG. Each panel displays both the high-resolution dataset (greyscale;

cell size of 25m) and the low-resolution dataset (colour; 200m cross-line spacing and 15m inline spacing) for the corresponding tensor

component.
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Figure 2. Neural field model architecture. The orange block projects the input position vector into a feature space and passes it through the

fully-connected layers to acquire the scalar potential.
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Figure 3. Quantitative comparison of interpolation performance for the synthetic dataset. (A–B) Spatial distribution of residuals between the

true and predicted Hxy tensor component using (A) the Truncated Radial Basis Function (RBF) method and (B) the Ensemble Neural Field

(ENF) approach. Insets show 1:1 parity kernel density estimate plots comparing predicted and true values. (C) R2 scores for each tensor

component (Hxx, Hxy , Hxz , Hyy , Hyz , Hzz) across three interpolation methods: RBF, the mean of the individual Neural Field (NF) scores

from the models within the ensemble, and ENF. The ENF and NF models consistently achieve higher accuracy across all components, while

RBF exhibits reduced performance, particularly for off-diagonal terms.
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Figure 4. Comparison of gravity gradiometry tensor components derived from two interpolation methods applied to the synthetic dataset.

(A–C) Gridded, histogram-equalised Hxx , Hxy , and Hxz components generated using a Truncated Radial Basis Function (RBF) interpola-

tion with 250 nearest neighbours and a smoothing factor of 100. (D–F) Corresponding results produced by the Ensemble Neural Field (ENF)

method. All values range from 0 to 1. Black lines in panel (E) indicate the input flight lines used for interpolation.
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Figure 5. Accuracy metrics as a function of increasing line spacing for the synthetic dataset. (A) R2 Score and (B) Structural Similarity Index

Measure (SSIM) (C) Mean Squared Error (MSE) were computed between the ground truth and the gridded results from the interpolation

methods. The Radial Basis Function (RBF) used 250 nearest neighbours, with a smoothing factor of 100, and the Neural Field (NF) model

used the same architecture as discussed in Section 3.3. The full tensor interpolation algorithm from Fitzgerald et al. (2012)(QUAT) was also

included for comparison, using the aforementioned RBF for the eigenvalue interpolation, and SLERP for rotational interpolation.
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Figure 6. Case study site near Geyer, Erzgebirge, Germany. (A) Flight lines from a subset of the airborne magnetic gradiometry survey, with

every fourth line (red) used as input for interpolation and the remaining lines (black) reserved for validation. (B) Spatial distribution of the

measured zz-component of the magnetic gradiometry tensor across the survey region.
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Figure 7. Quantitative comparison of interpolation performance for the Geyer dataset. (A–B) Spatial distribution of residuals between the

true and predicted Hxy tensor component along the test flight lines using (A) the Truncated Radial Basis Function (RBF) method and (B)

the Ensemble Neural Field (ENF) approach. Insets show 1:1 parity kernel density estimate plots comparing predicted and true values. (C)

R2 scores for each tensor component (Hxx, Hxy , Hxz , Hyy , Hyz , Hzz) across three interpolation methods: RBF, mean of the individual

Neural Field (NF) scores from the models within the ensemble, and ENF. The ENF and NF models consistently achieve higher scores across

all components, while RBF exhibits reduced performance, particularly for off-diagonal terms.
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Figure 8. Comparison of magnetic gradient tensor components interpolated onto a uniform grid (cell size = 25m) using two methods. (A–C)

Gridded, histogram-equalised Hxx, Hxy , and Hxz components obtained using the Truncated Radial Basis Function (RBF) interpolation

method, with 250 nearest neighbours and a smoothing factor of 100 for all of the flight lines, (D-F) Corresponding components interpolated

with RBF using every fourth flight line, (G-I) Corresponding components interpolated using the Ensemble Neural Field (ENF) approach.

Each column visualizes a distinct tensor component of the tensor. All values range from 0 to 1. Black lines in panels B, E and H indicate the

locations of the input flight lines used in the interpolation process.

24

https://doi.org/10.5194/egusphere-2025-2345
Preprint. Discussion started: 25 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 9. Comparison of recovered vector magnetic field components from two interpolation methods, evaluated against a high-resolution

reference model. (A–C) Reference vector components bx, by , and bz computed using Fourier domain transfer functions applied to magnetic

tensor components gridded via the Truncated Radial Basis Function (RBF) from all available flight lines. (D–F) Reconstructed vector com-

ponents obtained using the RBF method on tensor data from the training set of flight lines. (G–I) Corresponding results computed from the

spatial derivatives of the scalar field predicted by the Ensemble Neural Field (ENF) model. The black lines in each panel represent the flight

lines used to generate the corresponding component. Each panel shows the histogram-equalised spatial distribution of the respective vector

component across the subset of the Geyer survey area, mapped from 0 to 1.
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Figure 10. Uncertainty maps for the 100-model ensemble. The standard deviation computed across 100 models for the A) Hxx, B) Hxy , C)

Hxz , D) Hyy , E) Hyz , and F) Hzz components, and the recovered G) bx, H) by , and I) bz vector components.
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